Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems
نویسندگان
چکیده
This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample.
منابع مشابه
Catalytic Activity in Lithium-Treated Core−Shell MoOx/MoS2 Nanowires
Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/ MoS2 core−shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechan...
متن کاملBimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold ...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملSynthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition
In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...
متن کاملSynthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method
Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...
متن کامل